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Abstract

We propose an efficient algorithm for minimizing the piecewise constant Mumford–Shah functional of image seg-
mentation. It is based on the threshold dynamics of Merriman, Bence, and Osher for evolving an interface by its mean
curvature. We show that a very fast minimization can be achieved by alternating the solution of a linear parabolic par-
tial differential equation and simple thresholding.
� 2005 Elsevier Inc. All rights reserved.
1. Introduction

Image segmentation is one of the fundamental tasks of computer vision. It forms a crucial preliminary
step for subsequent object recognition and interpretation [22]. Its goal is to partition a given image into
regions that contain distinct objects. The most common form of segmentation is based on the assumption
that distinct objects in an image have different and approximately constant (or slowly varying) colors (or
brightnesses in the case of monochrome imagery). A natural approach is therefore to decompose an image
domain into approximately homogeneous regions that are separated by sharp changes in image features
(such as colors or brightness). The boundaries of the homogeneous regions are called ‘‘edges’’; they corre-
spond to places in an image where different objects meet.

Variational models for image segmentation have had great success. In this approach, the correct seg-
mentation for an image is exhibited as the minimizer of an appropriately chosen energy. One of the most
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successful and pioneering models that adopts this approach is the model of Mumford and Shah [23]. It
poses the segmentation problem as that of a best approximation: It looks for the best ‘‘cartoon-like’’
(i.e. piecewise smooth) approximation of minimal complexity for a given image. Once such an approxima-
tion is constructed, the homogeneous regions and their boundaries become obvious.

In this paper, we propose a very efficient PDE based algorithm for minimizing a version of the Mum-
ford–Shah segmentation functional. The algorithm stems from the work of Merriman, Bence, and Osher
(MBO) on diffusion generated motion by curvature [17–19]. Similar to the MBO algorithm, our algorithm
works by alternating the solution of a linear diffusion equation with thresholding. Thus, unlike other PDE
based methods for minimizing the Mumford–Shah functional that involve complicated (sometimes degen-
erate) equations, every step in our algorithm is amenable to fast numerical solution by well-established
techniques.

This paper is organized as follows: In Section 2, we describe the Mumford–Shah model along with sev-
eral of its variants and introduce notation. Section 3 describes some recent previous work on fast solution
of variational segmentation models; in particular, the work of Gibou and Fedkiw, and Song and Chan are
recalled. Section 4 is devoted to recalling the Chan–Vese algorithm, which is a level set based method for
minimizing certain variants of the Mumford–Shah model. Section 5 recalls the MBO threshold dynamics
for motion by mean curvature; this forms the basis on which we build our proposed algorithm for minimiz-
ing the Mumford–Shah functional in Section 6. Section 7 describes some variants and extensions of the
algorithms proposed in Section 6. Section 8 presents results of numerical experiments, and Section 9 pro-
vides a discussion indicating further improvements.
2. Mumford–Shah model

The full Mumford–Shah model is a variational problem for approximating a given image by a piecewise
smooth image of minimal complexity. Let D � RN be a bounded domain with Lipschitz boundary, model-
ing the image domain (for example, the computer screen). Let f(x) :D! [0, 1] represent a grayscale image;
we merely assume that f(x) is a bounded measurable function. To find a segmentation of f(x), Mumford and
Shah proposed in [23] carrying out the following minimization:
min
u: D!R
K�D

MSðu;KÞ :¼
Z
DnK

jruj2dxþ lLengthðKÞ þ k
Z
D
ðu� f Þ2dx

( )
. ð1Þ
Here, K is to be a closed subset of D given by the union of a finite number of curves. It represents the set of
‘‘edges’’ (i.e. boundaries of homogeneous regions) in the image f. The function u is the piecewise smooth
approximation to f. Because of the Dirichlet integral taken over the set DnK in the energy, u is forced to
be smooth in each connected component of DnK. However, it is allowed to have jumps across the curves
that make up K.

The full Mumford–Shah functional (1) poses a formidable optimization problem. A number of algo-
rithms have been proposed for its solution. For example, the work of Ambrosio and Tortorelli [1] shows
how to approximate (1), in the sense of Gamma convergence [6], with a class of energies that are much more
tractable numerically and that can be subsequently minimized via gradient descent; see [14] for numerical
results. This is one of the best known ways to tackle (1) in its full generality.

In many vision applications, solving (1) in its full generality is an overkill. (However, there are also many
situations in which it is not general enough.) For example, one might know that the objects in the scenes of
interest are not only smoothly varying, but actually approximately constant in color (or grayscale inten-
sity). Or, one might know in advance the maximum number of objects in the scene (and hence the maxi-
mum number of regions in the segmentation). An example of such an application is medical imaging,
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where one might for instance be interested in segmenting brain MRI images into background, gray matter,
and white matter. Foreground–background segmentation is also a simple example in which one is interested
in segmentations that only have two regions. In such scenarios it makes sense to work with a simplified ver-
sion of (1) that is easier to minimize.

A very useful simplification of (1) is to restrict the minimization to functions (i.e. segmentations) that
take a finite number of values. The resulting model is commonly referred to as the piecewise constant Mum-

ford–Shah model. Unlike in the full Mumford–Shah model, edge contours in piecewise constant models are
necessarily boundaries of regions. In this paper, we are concerned especially with the case where the solu-
tion takes only two (unknown) values, and hence is of the form u(x) = c11R(x) + c21DnR(x), where R ˝ D. In
this case, (1) reduces to the following minimization problem:
min
R�D

c1;c22R

EðR; c1; c2Þ :¼ PerðR;DÞ þ k
Z
R
ðc1 � f Þ2dxþ k

Z
DnR

ðc2 � f Þ2dx
( )

. ð2Þ
Model (2) is known as the two-phase, piecewise constant Mumford–Shah model, and was considered previ-
ously by Chan and Vese with a level set formulation [5]; their technique is described in detail in Section 4.
Our algorithm for minimizing this functional efficiently is presented in Section 6. If (1) is restricted instead
to segmentations that take, for example, at most four values (i.e. to functions of the form uðxÞ ¼
c11R1\R2

ðxÞ þ c21R1\Rc
2
ðxÞ þ c31Rc

1
\R2

ðxÞ þ c41Rc
1
\Rc

2
ðxÞ) an approximate version of the resulting functional

can be written as
min
R1;R2�D
c1;...;c42R

EðR1;R2; c1; . . . ; c4Þ :¼ PerðR1;DÞ þ PerðR2;DÞ þ k
Z
R1\R2

ðc1 � f Þ2dxþ k
Z
R1\Rc

2

ðc2 � f Þ2dx
(

þ k
Z
Rc
1
\R2

ðc3 � f Þ2dxþ k
Z
Rc
1
\Rc

2

ðc4 � f Þ2dx
)
. ð3Þ
Multi-phase models of type (3) were considered by Vese and Chan in [35] using once again the level set
method, as an extension of their previous work [5]; see also [36,34]. In Section 7, we show how our proposed
algorithm for the two-phase case (2) given in Section 6 can be extended to the approximate multi-phase
versions such as (3).
3. Previous work

There has been a lot of recent research activity on devising efficient algorithms for minimizing the Mum-
ford–Shah and related segmentation energies. We have already mentioned the approach of Ambrosio and
Tortorelli [1] which uses Gamma convergence to approximate the original functional with elliptic ones. It
can be regarded as a diffuse interface method, in which the ‘‘edges’’ in the segmentation are represented as
thin transition layers. Another very successful PDE technique is via the level set method of Osher and
Sethian [24,25] to represent the unknown curves in the minimization of (1) or (2). This is the approach
taken by Chan and Vese [5,35], whose algorithms are among the most reliable to date. Section 4 is devoted
to a detailed review of the Chan–Vese algorithm.

Recently, a number of new algorithms have been proposed for fast minimization of the piecewise con-
stant Mumford–Shah functional. These papers are motivated by the observation that the PDEs resulting
from the variational approaches mentioned above are hard to solve numerically. In particular, common
solution techniques for these PDE do not scale very well with respect to the number of pixels in the given
image. Therefore, several researchers have proposed algorithms that try to avoid these difficult equations.
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Gibou and Fedkiw [10] proposed an algorithm whose segmentation results are similar to the ones ob-
tained from Mumford–Shah based techniques. Their algorithm consists of several pre- and post-processing
steps: first, the given original image is preprocessed by smoothing via the Perona–Malik non-linear diffusion
scheme [26]. Then, the k-means algorithm [16] is run (with two means) to separate the processed image into
two phases. Finally, to introduce a way for the user to adjust the level of detail in the segmentation, the
phase boundary thus found is evolved via motion by mean curvature for a certain amount of time. The
approach of the present paper was partially motivated by this work of Gibou and Fedkiw, especially in
regard to combining diffusion and thresholding for the purpose of segmentation. In contrast to their
method, however, our proposed algorithm has only one parameter that is directly related to the one in
the Mumford–Shah functional. The Gibou–Fedkiw algorithm has at least three parameters that need to
be tuned in it (two for the Perona–Malik scheme, and one for the motion by mean curvature step), whereas
the piecewise constant Mumford–Shah model (2) has only one. On the other hand, the flexibility of tuning
different parameters could potentially be an advantage in certain applications.

Another recent proposal for fast segmentation came from Song and Chan [33]. Their approach, unlike
that of Gibou and Fedkiw, is to stick with the piecewise constant model (2) – or its multi-phase version –
but to find a non-PDE technique of minimizing it. The algorithm they put forth commences with an initial
partitioning of the pixels into two groups (phases), and then tests each pixel to see if switching it to the other
phase decreases energy (2). If it does, the pixel is removed from one phase and added to the other. The algo-
rithm sweeps through the pixels in the image with this procedure until no pixel can be updated. Numerical
experiments with simple images that are close to being two-valued show that this algorithm can find
reasonable segmentations very quickly (in a matter of a few sweeps). However, it is also possible for it
to terminate prematurely and get stuck; see [3] for examples where an improvement was also proposed.
There are other methods that use binary functions to indicate regions in segmentation; see e.g. [13]. A fur-
ther caveat of these methods is grid anisotropy that may result in inconsistency in the subsequent numerical
approximations. Indeed, the gradient of a strictly binary function (calculated by a standard finite difference
formula, such as centered differencing) that takes only 0 or 1 as grid values lies in a very small set of direc-
tions. This can introduce large errors. For example, one can check by a simple calculation that the numer-
ical value of a quantity such as �j$uj differs from its correct value by an order 1 quantity, if ui,j 2 {0,1} for
all (i, j). This inconsistency could arise even if the discontinuity is a straight line aligned with the grid; see [7]
for discussions on similar issues.

The recent paper [11] by Jawerth and Lin is closest to the approach pursued in this paper. There, the
authors apply ideas of Mascarenhas [15] – who proposed an extension of the MBO algorithm – to the geo-
desic active contours model of edge detection. The image segmentation model that we consider and the
dynamics that we propose in this paper are completely different. However, some connections are indicated
in Section 7.
4. Chan–Vese algorithm

In [5], Chan and Vese proposed a level set method for numerical realization of the optimization problem
(2). In this approach, the boundary of the unknown set R is represented as the 0-level set of a Lipschitz
continuous function /(x) :D ! R so that R = {x 2 D :/(x)P 0}. The idea is then to express the functional
(2) in terms of the level set function /. One ends up with
min
/:D!R
c1;c22R

Z
D
jrHð/Þj þ kfHð/Þðc1 � f Þ2 þ ð1� Hð/ÞÞðc2 � f Þ2gdx|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

:¼CV ð/;c1;c2Þ

; ð4Þ
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where H(n) :R ! R is the Heaviside function
HðnÞ :¼
0 if n < 0;

1 if n P 0.

�

In practice, it is necessary to use a regularized version He of (i.e. a smooth approximation to) H(n). The
resulting Euler–Lagrange equation for / leads to the following gradient descent PDE:
/t ¼ H 0
eð/Þ r � r/

jr/j

� �
� kfðc1 � f Þ2 � ðc2 � f Þ2g

� �
. ð5Þ
On the other hand, variation of (4) with respect to the two constants c1,c2 show that the optimal choice of
these for a given / is
c1 ¼
R
D Hð/Þf dxR
D Hð/Þdx and c2 ¼

R
Dð1� Hð/ÞÞf dxR
Dð1� Hð/ÞÞdx . ð6Þ
The term r � r/
jr/j

� �
that appears in the right-hand side of PDE (5) has a nice geometric interpretation: it is

the curvature of the level sets of the function /. It is also a degenerate elliptic term; clearly there are prob-
lems when j$/j = 0 that require regularization. These issues make (5) a costly PDE to solve.

We remark that the specific manner in which the Heaviside function in (5) is regularized, plays an impor-
tant role in the resulting flow. In the Chan–Vese paper [5], the Heaviside function is regularized as
He(n) := (1/p)arctan(x/e) + (1/2) with e = 1 regardless of the resolution. There, the authors point out that
the non-compactly supported regularization allows their algorithm to detect interior contours in segmen-
tations. This claim is verified in [4], where it is also shown that one could even replace the H 0

eð/Þ term
by 1. Another important point is that a casual regularization of H 0

eð/Þ may lead to inaccuracies due to
anisotropy induced by the grid. It is possible but non-trivial to regularize H 0

e accurately; how to do so
has been shown in detail in the recent work [7] of Engquist et. al.

Alternatively, one can replace the singular term H 0
eð/Þ that appears in (5) with j$/j:
/t ¼ jr/j r � r/
jr/j

� �
� kfðc1 � f Þ2 � ðc2 � f Þ2g

� �
. ð7Þ
This is the approach of Zhao et. al. in [37] for solving closely related variational problems. It is easy to see
that the evolution defined by (7) also decreases the energy (4). Furthermore, (7) can be interpreted in terms
of the motion of the level sets of /; each level set of / moves with the following speed V in the outer normal
direction:
Normal velocity V ¼ j� k ðc1 � f Þ2 � ðc2 � f Þ2
� �

; ð8Þ
where j denotes the curvature of the level set, with the convention that it is negative when the curve is con-
vex. However, due a maximum principle associated with (7), no new interior contour may appear during
the evolution. This makes it less effective in certain applications. On the other hand, this formulation allows
larger time steps to be taken than with (5).

The level set based algorithm of Chan and Vese can be extended to multi-phase piecewise constant
models, such as the four-phase model (3). This is done in [35]. The idea is simply to introduce new level
set functions to describe a greater number of regions using intersections between interiors and exteriors
of the level sets. One can then use the Heaviside function to express characteristic functions of the var-
ious regions that appear in the integrals of (3) in terms of these level set functions. Subsequently, find-
ing the Euler–Lagrange equations for the energy thus expressed in terms of level set functions yields a
coupled system of non-linear parabolic PDEs to be solved for gradient descent. The details can be
found in [35]. The Chan and Vese algorithm was also extended to the piecewise smooth version of
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(1) where the discontinuity set is restricted to be a finite union of closed contours [35]. In this paper, we
will not consider the piecewise smooth models.
5. MBO scheme

Merriman et al. [17–19] introduced a very interesting scheme to approximate the motion of an interface
by its mean curvature. Their idea is to alternate the solution of the linear heat equation with thresholding.
In this section we recall the original MBO algorithm by interpreting it in terms of another well known tech-
nique for approximating motion by mean curvature, namely the Allen–Cahn equation (sometimes referred
to as the phase field method):
ut ¼ 2eDu� 1

e
W 0ðuÞ. ð9Þ
Here, W(n) :R ! R is a double well potential with equidepth wells at 0 and 1; for example a simple choice is
W(n) = n2(1 � n)2.

It is well known that in the limit e ! 0+ the rescaled solutions ue(x, t/e) of (9) yield motion by mean cur-
vature of the interface that separates the 0 and 1 phases of the solutions. (A formal, matched asymptotic
expansion that shows this fact has been carried out in [27]; many researchers subsequently provided rigor-
ous justification under various hypothesis – see [9] for example.) Consider a ‘‘time splitting’’ scheme for the
solution of (9): choose a dt > 0 and alternate the following two steps to generate approximate solutions
un(x) at discrete times:

1. Let v(x) = S(dt)un(x) where S(dt) is the propagator (by time dt) of the following heat equation:
wt ¼ 2eDw
with appropriate boundary conditions.
2. Set un + 1(x) = T(dt)v(x), where T(dt) is the propagator (by time dt) of the following ODE:
wt ¼ � 1

e
W 0ðwÞ.
The second step of the procedure given above is a stiff, non-linear ODE. It has two stable, stationary solu-
tions: w = 0 and w = 1 (and an unstable one at w ¼ 1

2
). The essence of the original MBO scheme is the obser-

vation that for dt > 0 fixed and e! 0+, solving of this ODE turns into thresholding: at every point x the
value of w(x, t) converges to one of the two stable equilibrium values (0 or 1), depending on whose basin
of attraction it initially lies in
lim
e!0þ

T ðdtÞn ¼
0 if n 2 ð�1; 1

2
Þ;

1 if n 2 ð1
2
;1Þ.

(

The MBO scheme replaces the second step (the solution of the ODE) with this thresholding:

The MBO scheme:

1. Let v(x) = S(dt)un(x) where S(dt) is the propagator (by time dt) of the standard heat equation
wt ¼ Dw
with appropriate boundary conditions.
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2. Set
unþ1ðxÞ ¼
0 if vðxÞ 2 ð�1; 1

2
�;

1 if vðxÞ 2 ð1
2
;1Þ.

(

The original MBO algorithm described above has been rigorously shown to approximate motion by mean
curvature in [8,2]. While the interface remains smooth, the analytical error in the approximation is on the
order of

ffiffiffiffi
dt

p
. Several generalizations of the basic algorithm have been given in [15,30–32]. These works

show how the original algorithm can be modified to approximate more general interfacial motions, such
as motion by anisotropic curvature, motion by a constant plus curvature, and motion of multiple junctions.
Moreover, an efficient numerical algorithm is proposed in [29] that is based on the fast Fourier transform
on grids adapted to the evolving interface.
6. Proposed dynamics for Mumford–Shah

Inspired by the MBO scheme that approximates motion by mean curvature via thresholding, we propose
a similar thresholding scheme that approximates gradient descent for the two-phase piecewise constant
Mumford–Shah functional. This constitutes the essential contribution of the present paper. Jawerth and
Lin report in [11] edge detection results obtained by an MBO type numerical algorithm applied to the geo-
desic active contours model. Our proposed dynamics and the vision model we use are completely different.

To discover a threshold dynamics for the gradient flow of (2), we first consider a phase-field approxima-
tion. The idea is to find a diffuse interface approximation of (2) and use it to motivate our proposed dynam-
ics much as the Allen–Cahn equation (9) was used to motivate the original MBO scheme in Section 5.

A diffuse interface approximation for (2) is given by the following sequence of energies:
MSeðu; c1; c2Þ :¼
Z
D
ejruj2 þ 1

e
W ðuÞ þ kfu2ðc1 � f Þ2 þ ð1� uÞ2ðc2 � f Þ2gdx. ð10Þ
where e > 0 and the potentialW(n) = n2(1 � n)2 is exactly the same as in Section 5. It follows from the work
of Modica and Mortola [20,21] and basic properties of Gamma convergence thatMSe ! MS in the sense of
Gamma convergence as e! 0+. Variation of energy (10) with respect to u yields the following gradient des-
cent equation:
ut ¼ 2eDu� 1

e
W 0ðuÞ � 2kfuðc1 � f Þ2 þ ðu� 1Þðc2 � f Þ2g. ð11Þ
We can find a candidate for the threshold dynamics of (2) by splitting Eq. (11). There are several ways in
which (11) can be split. One possibility, which we shall pursue here, is to split it so that the thresholding step
is the same as the one in the original MBO scheme. That leaves the solution of a linear heat equation with a

forcing term as the first step of the new algorithm:

1. Let v(x) = S(dt)un(x), where S(dt) is the propagator (by time dt) of the linear parabolic equation
wt ¼ Dw� 2~kðw c1 � fð Þ2 þ ðw� 1Þðc2 � f Þ2Þ ð12Þ

with appropriate boundary conditions.

2. Set
unþ1ðxÞ ¼
0 if vðxÞ 2 ð�1; 1

2
�;

1 if vðxÞ 2 ð1
2
;1Þ.

(
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Notice that the proposed candidate dynamics above differs from the original MBO scheme only in the lin-
ear parabolic PDE involved. By using the maximum principle, it can be easily seen that just like the heat
equation in the original MBO scheme, the PDE of the proposed scheme above preserves the condition
0 6 w(x, t) 6 1 for all time. In fact, just like the original MBO algorithm, the dynamics proposed above pre-
serves the order of solutions (i.e. it satisfies a comparison principle). Also notice that we have replaced the
parameter k that appears in the variational model (2) and in the diffuse interface flow (11) by ~k to indicate
that the relation of ~k to the original scale parameter k is yet to be determined.

To understand how ~k in the proposed dynamics should be related to the scale parameter k in the model
(2), we will consider the way a characteristic function evolves under the proposed PDE (12). Let f(x) be a
given continuous image, and let u(x, 0) = 1R(x) be the initial condition for (12). Assume that R has smooth
boundary oR, and let p 2 oR. We will be looking at the solution of (12) in a neighborhood of the point p for
a very short time; so we replace the term f(x) in (12) by the constant f(p), and for convenience define
A: = (c1 � f(p))2 and B := (c2 � f(p))2.

We first consider the one-dimensional version of (12) on all R:
wt ¼ wxx � 2~kðAþ BÞwþ 2~kB on ðx; tÞ 2 R� Rþ;

wðx; 0Þ ¼ 1R�ðxÞ.
ð13Þ
The solution of (13) is simply
wðx; tÞ¼ e�2~kðAþBÞtðGt �1R�ÞðxÞþ2~kB
Z t

0

e�2~kðAþBÞðt�sÞds¼ e�2~kðAþBÞt ðGt �1R�ÞðxÞþ B
AþB

ðe2~kðAþBÞt�1Þ
� �

;

ð14Þ

where Gt(x) is the Gaussian kernel in one dimension:
GtðxÞ ¼
1ffiffiffiffiffiffiffi
4pt

p e�x2=4t.
At x = 0 and t = dt, (14) gives
wð0; dtÞ ¼ e�2~kðAþBÞdt 1

2
þ B
Aþ B

ðe2~kðAþBÞdt � 1Þ
� �

� 1

2
þ ~kdtðB� AÞ. ð15Þ
Differentiating (14) we get
oxwð0; dtÞ ¼ �e�2~kðAþBÞdt 1ffiffiffiffiffiffiffiffiffi
4pdt

p � � 1ffiffiffiffiffiffiffiffiffi
4pdt

p . ð16Þ
Let p(t) be such that wðpðtÞ; tÞ ¼ 1
2
. Then, p(t) corresponds to the location of the edge. Strict monotonicity of

w for positive time implies that this defines p(t) uniquely for t > 0. Formulas (15) and (16) allow us to esti-
mate p(t) as
pðtÞ � �
wð0; dtÞ � 1

2

oxwð0; dtÞ
� 2

ffiffiffi
p

p ~kðdtÞ3=2ðB� AÞ. ð17Þ
We now move on to the two-dimensional problem
wt ¼ Dw� 2~kðAþ BÞwþ 2~kB for ðx; tÞ 2 R2 � Rþ;

wðx; 0Þ ¼ 1RðxÞ.
ð18Þ
Again we consider the solution of (18) for a short interval of time and in a neighborhood of the point
p 2 oR. For tP 0, let R(t) � R2 be a bounded domain with smooth boundary oR(t), and with R(0) = R.
We assume that oR(t) evolves smoothly in time. Let dR(t)(x) be the signed distance function to oR(t).
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Motivated by a change of variables used in [27], we consider the following ansatz as a candidate for the
solution of (18) in a neighborhood of p:
wðx; tÞ ¼ wðdRðtÞðxÞ; tÞ.
We have
wtðx; tÞ ¼ wxðdRðtÞðxÞ; tÞ
o

ot
dRðtÞðxÞ

� �
þ wtðdRðtÞðxÞ; tÞ

¼ wxðdRðtÞðxÞ; tÞ
o

ot
dRðtÞðxÞ

� �
þ wxxðdRðtÞðxÞ; tÞ � 2~kðAþ BÞwþ 2~kB. ð19Þ
And
Dwðx; tÞ ¼ wxðdRðtÞðxÞ; tÞDdRðtÞðxÞ þ wxxðdRðtÞðxÞ; tÞjrdRðtÞðxÞj2. ð20Þ
Combining formulas (19) and (20) and noting that j$dR(t)(x)j2 = 1 we get
wtðx; tÞ ¼ Dwðx; tÞ � 2~kðAþ BÞwþ 2~kBþ wðdRðtÞðxÞ; tÞ
o

ot
dRðtÞðxÞ � DdRðtÞðxÞ

� �
.

We see that if the curve oR(t) evolves in such a way that the following holds:
o

ot
dRðtÞðxÞ ¼ DdRðtÞðxÞ; ð21Þ
then the ansatz given by w(x, t) satisfies Eq. (18) on the curve oR(t). Along this curve, we have that DdR(t)(x)
is the curvature and otdR(t)(x) is the normal velocity. Thus, if c(Æ, t) is a parametrization of oR(t), then Eq.
(21) will be satisfied close to the curve provided that c(t) evolves via motion by curvature
o

ot
cð�; tÞ ¼ jðcð�; tÞÞNðcð�; tÞÞ; ð22Þ
where j denotes the curvature and N denotes the outward unit normal of the curve. Now let C(Æ, t) be a
parametrized curve that evolves according to the motion law
o

ot
Cð�; tÞ ¼ j Cð�; tÞð Þ þ 2~k

ffiffiffiffiffiffiffi
pdt

p
ðB� AÞ

� �
N Cð�; tÞð Þ;

Cð�; 0Þ ¼ cð�; 0Þ.
ð23Þ
Notice that the second term in the right-hand side of (23) is simply the speed of the one dimensional profile
obtained from (17). Then, formulas (22) and (17) imply that
Cð�; dtÞ � x 2 R2 : wðx; dtÞ ¼ 1

2

� �
.

Proposed dynamics

We can now relate the parameter ~k in the candidate dynamics given above to the scale parameter k that
appears in the model (2). We simply choose ~k so that the normal velocity of the curve in (23) matches (8):
~k ¼ k

2
ffiffiffiffiffiffiffi
pdt

p .
With that, our threshold dynamics for the two-phase piecewise constant Mumford–Shah functional finally
becomes



1. Let v(x) = S(dt)un(x), where S(dt) is the propagator (by time dt) of the linear parabolic
equation

wt ¼ Dw � kffiffiffiffiffiffiffiffi
pdt

p ðwðc1 � f Þ2 þ ðw � 1Þðc2 � fÞ2Þ

with appropriate boundary conditions.
2. Set

unþ1ðxÞ ¼
0 if vðxÞ 2 ð�1; 1

2
�;

1 if vðxÞ 2 ð1
2
;1Þ.

(
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As explained above, under this procedure existing or newly created edge contours evolve with normal veloc-
ities consistent with Eq. (8). The constants c1,c2 can be updated after each thresholding step according to
the formulas
c1 ¼
R
D uf dxR
D udx

and c2 ¼
R
Dð1� uÞf dxR
Dð1� uÞdx .
However, our numerical experience suggests that it is also sufficient to update c1,c2 less frequently, for in-
stance once every few iterations of the above algorithm.

The PDE that constitutes the first step of the iterative algorithm proposed above is a linear diffusion equa-
tion. Appropriate boundary conditions include periodic and Neumann boundary conditions. As such, there
are many efficient numerical techniques for its solution. One possibility is to discretize it implicitly and solve
the resulting elliptic equation via a fast method such as plain vanilla multigrid. PDEs that result from many
other approaches are much more troublesome. For example, the level set approach leads to PDEs that are
singular and degenerate. For such equations, standard fast solution techniques such as multigrid do not al-
ways attain their ‘‘textbook’’ convergence rates. Also note that for small dt the PDE in the proposed algo-
rithm actually becomes easier to solve, since it becomes, loosely speaking, more ‘‘diagonally dominant’’.

An important distinction of the threshold dynamics proposed above from the standard MBO algorithm
is that the diffusion step involves the parameter dt explicitly in the linear parabolic equation that needs to be
solved.
7. Extensions and variants

In this section, we consider several extensions of and variations on the thresholding algorithm proposed
in the previous section.
Multi-phase segmentation

We start by indicating how the proposed threshold dynamics of Section 6, which minimizes the two-
phase segmentation model (2), can be extended to multi-phase segmentation. This is easy to accomplish,
and will be illustrated on the four-phase model (3): once again we first write down a phase-field approxi-
mation to (3), and then split the terms appropriately. We will use a multi-phase representation motivated
by the Vese–Chan model introduced in [35]. The diffuse interface version (10) of (2) can be extended to four-
phase segmentation as follows:



1. L
l

a

w
2. F
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MSeðu1;u2;c1; . . . ;c4Þ :¼
Z
D
eðjru1j2þjru2j2Þþ

1

e
ðW ðu1ÞþW ðu2ÞÞþkfu21u22ðc1�f Þ2þu21ð1�u2Þ2ðc2�f Þ2

þð1�u1Þ2u22ðc3�f Þ2þð1�u1Þ2ð1�u2Þ2ðc4�f Þ2gdx; ð24Þ
where (u1(x),u2(x)) identifies the four regions based on whether it is approximately (0,0), (0,1), (1,0),
or (1,1). Variations with respect to the functions u1,u2 yield the following gradient descent equa-
tions:
otu1 ¼ 2eDu1�
1

e
W 0ðu1Þ�2kfu1½u22ðc1� f Þ2þð1�u2Þ2ðc2� f Þ2�þðu1�1Þ½u22ðc3Þ

2þð1�u2Þ2ðc4� f Þ2�g

ð25Þ

and
otu2¼2eDu2�
1

e
W 0ðu2Þ�2kfu2½u21ðc1�f Þ2þð1�u1Þ2ðc3�f Þ2�þðu2�1Þ½u21ðc2�f Þ2þð1�u1Þ2ðc4�f Þ2�g.

ð26Þ

Splitting Eqs. (25) and (26), in the same manner that (11) was split in Section 6, yields the following thresh-
old dynamics:
et (v1(x),v1(x)) = S(dt)(u1,n(x),u1,n(x)), where S(dt) is the propagator (by time dt) of the fol-
owing system of parabolic equations:

otw ?1 ¼ Dw1 �
kffiffiffiffiffiffiffiffi
pdt

p fw1½w2
2ðc1 � f Þ2 þ ð1�w2Þ2ðc2 � f Þ2� þ ðw1 � 1Þ½w2

2ðc3Þ2

þ ð1�w2Þ2ðc4 � f Þ2�g.

nd

otw2 ¼ Dw2 �
kffiffiffiffiffiffiffiffi
pdt

p fw2½w2
1ðc1 � f Þ2 þ ð1�w1Þ2ðc3 � f Þ2� þ ðw2 � 1Þ½w2

1ðc2 � f Þ2

þ ð1�w1Þ2ðc4 � f Þ2�g.

ith appropriate boundary conditions.
or j = 1,2, set

uj;nþ1ðxÞ ¼
0 if vjðxÞ 2 ð�1; 1

2
�;

1 if vjðxÞ 2 ð1
2
;1Þ.

(

As in the two-phase model, the constants of the segmentation can be updated after each thresholding step
in the iteration. In the case of the four phase model, variations of the energy (24) with respect to c1, . . . ,c4
yield the following optimal choices:
c1 ¼
R
D u1u2f dxR
D u1u2 dx

; c2 ¼
R
D u1ð1� u2Þf dxR
D u1ð1� u2Þdx

;

c3 ¼
R
Dð1� u1Þu2f dxR
Dð1� u1Þu2 dx

; c4 ¼
R
Dð1� u1Þð1� u2Þf dxR
Dð1� u1Þð1� u2Þdx

.
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Unlike the two-phase dynamics of Section 6, multi-phase dynamics in general involves a non-linear sys-
tem of PDEs as one of its iterative steps, as can be observed above in the case of the four-phase model.
However, the non-linearity is only in the lowest order term, and we notice that the jth equation in the
system is in fact linear in wj. Therefore, a natural solution approach would be a semi-implicit discretiza-
tion where in the right hand side of the jth equation wj is treated implicitly, and wi for i 6¼ j are treated
explicitly.

Alternatives to proposed dynamics

As mentioned before, the phase-field approximation (11) can be split in more than one way; the thresh-
old dynamics we described in Section 6 is only one of them. Another way to split (11) is to group together
all terms in the right-hand side except the Laplacian; that leads to a thresholding scheme whose PDE step
involves, just like the MBO scheme, the standard heat equation:
1. Let v(x) = S(dt)un(x), where S(dt) is the propagator (by time dt) of the standard heat
equation

wt ¼ Dw

with appropriate boundary conditions.
2. For every x, set

unþ1ðxÞ ¼ lim
t!1

yðtÞ;

where y(t) is the solution of the initial value problem:

y 0 ¼ �W 0ðyÞ �
~~
kðyðc1 � f Þ2 þ ðy � 1Þðc2 � f Þ2Þ;

yð0Þ ¼ vðxÞ.

(

The second step of the dynamics above can be interpreted as a form of thresholding. This would be done by
finding the basins of attraction of stable equilibrium solutions of the ODE. Then, the second step of the
algorithm is equivalent to setting the value of un + 1(x) equal to the equilibrium solution of the ODE whose
basin of attraction w(x) happens to lie in. Note that unlike the one in the original MBO scheme, this thres-
holding would be space dependent: this is how the image information gets incorporated into the dynamics.
Thus, unlike the original MBO scheme, the threshold value would be different from 1

2
and depend on x. In

order for this algorithm to be consistent,
~~k needs to be scaled correctly with respect to dt. In this sense, the

algorithm suggested above is akin to the extensions of MBO considered in [15,31], and is also related to the
technique used in [11] to solve the geodesic active contours model.

Another possibility is to split the dynamics into three steps. A convenient way of doing this is to do oper-
ator splitting in the linear parabolic equation that constitutes the first step of the algorithm proposed in
Section 6. In other words, one can solve the PDE
wt ¼ Dw� kffiffiffiffiffiffiffi
pdt

p ðwðc1 � f Þ2 þ ðw� 1Þðc2 � f Þ2Þ
up to time dt starting from the initial condition w(x,0) = w0(x) by repeating the following steps n times:

1.1. Solve the standard heat equation
wt ¼ Dw with initial condition wðx; 0Þ ¼ w0ðxÞ.
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1.2. Solve the pointwise (in x) ODE
zt ¼ � kffiffiffiffiffiffiffi
pdt

p ðzðc1 � f Þ2 þ ðz� 1Þðc2 � f Þ2Þ
with initial condition z(x, 0) = w(x,dt/n).
1.3. Set w0(x) = z(x,dt/n).

Of course, this further splitting of the PDE introduces some additional error.
An advantage of the two alternatives presented above to the dynamics of Section 6 is that the PDE in-

volved in these variants is the standard heat equation. The PDE of the algorithm of Section 6, although
linear, has non-constant coefficients in its lowest order terms.
8. Numerical examples

In this section, we illustrate the algorithm of Section 6 and the multi-phase algorithm of Section 7 on a
few test images.

As we mentioned before, the PDEs that appear in the proposed algorithms of Sections 6 and 7 can be
solved efficiently in a number of different ways. For example, the PDE that appears in the proposed algo-
rithm for two-phase segmentation given in Section 6 has the form
ut ¼ Du� AðxÞuþ BðxÞ.

To generate the numerical results shown in this section, we used the following discretization in time:
unþ1 � un

ds
¼ Dunþ1 � Cunþ1 þ ðC � AðxÞÞun þ BðxÞ; ð27Þ
where ds is the time step size and C is a constant to be chosen large enough compared to A(x). Once dis-
cretized also in space in some standard manner (using for instance the five point stencil for the Laplacian),
the resulting linear system was solved for un + 1 using the fast Fourier transform.

The scheme given above is unconditionally stable and certainly fast; however, it must be pointed out that
it is not necessarily the best way to solve the linear parabolic PDE in question; the scheme given above is
intended merely as an example of what can be done. The more important point is the following: The PDE
in question is simple enough that there is a variety of powerful and completely standard numerical tech-
niques available for its solution. For instance, if desired one can easily apply the standard multigrid algo-
rithm to solve the linear system in order to achieve faster results than what is attainable by the specific
method quoted above. We leave the decision of the best choice to experts in fast algorithms for linear
equations.

Calculations of Section 6 justify the proposed algorithms by considering their dt ! 0+ limit. However,
from a practical standpoint convergence in this limit is not necessarily the most important aspect of the
algorithms. Indeed, for applications the greatest strength of the proposed algorithms is that they converge
very quickly to a fixed point especially when dt is chosen large.

Fig. 1 shows results of an experiment with a synthetic image at 256 · 256 resolution. The image con-
sists of objects with blurred boundaries corrupted with the addition of a significant amount of Gaussian
noise. Nevertheless, the image is close to being piecewise constant; this makes it relatively easy to
segment using piecewise constant models such as the ones considered in this paper. The proposed algo-
rithm of Section 6 for two-phase segmentation required only three iterations to reach the steady state
shown. Each one of these iterations requires the solution of the linear parabolic PDE for a short time
interval of length dt; we accomplished this by taking three steps of size dt/3 with scheme (27). Using a



Fig. 1. Test with a synthetic image of resolution 256 · 256. Left-hand side figure has the initial contour superimposed on the image to
be segmented. Right-hand side figure shows the final contour found using the algorithm of Section 6. Only three iterations were
necessary to reach an essentially steady state. Each iteration involved taking three steps with scheme (27), bringing the total number of
steps taken for curve evolution to 9. Notice that interior contours are also detected.
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larger number of (shorter) steps to solve the PDE at each iteration made no appreciable difference in
the result.

Fig. 2 shows the result of an experiment with the two-phase algorithm of Section 6 on a real test image at
256 · 256 resolution. This image is slightly more challenging than that of Fig. 1, in that it is not very well
approximated by just two constants. The algorithm required 15 iterations to reach an essentially steady
state. Once again, at each iteration three steps of scheme (27) were used.

Fig. 3 shows the result of an experiment with the four-phase algorithm presented in Section 7. The algo-
rithm found only three regions with the initial conditions shown. We observed that multi-phase segmenta-
tion algorithms, including the Vese–Chan algorithm and the one proposed in this paper, have more
sensitive dependence on initial conditions than their two-phase versions. This is an aspect of multi-phase
segmentation algorithms that we did not intend to address in this work, our emphasis being instead on
improving computational complexity.

Fig. 4 shows the result of applying the proposed two-phase segmentation algorithm of Section 6 using
different values of dt. From left to right, top to bottom, the algorithm was run on the test image shown in
Fig. 2 using dt = dt0, dt = 2dt0, dt = 4dt0, and dt = 8dt0, respectively. As can be seen, the solutions obtained
are quite close; however with very large choices of dt there is noticeable oversmoothing.

Fig. 5 shows the result of applying the proposed algorithm of Section 6 to the test image of Fig. 2 at
different resolutions. The resolutions range from 128 · 128 to 1024 · 1024. In each case, the same
Fig. 2. Test with a real image of resolution 256 · 256. Left-hand side figure has the initial contour superimposed on the image to be
segmented. Right-hand side figure shows the final contour found using the algorithm of Section 6. Only 15 iterations were necessary to
reach an essentially steady state. Each iteration involved taking three steps with scheme (27), bringing the total number of steps taken
for curve evolution to 45.



Fig. 4. Solutions (region boundaries) obtained by the algorithm of Section 6 on the test image of Fig. 2 using different values of dt.
Going left to right, top to bottom, the value of dt was double in each case. As implied by our calculations, there is little difference
between the results, although for very large values of dt oversmoothing becomes noticeable.

Fig. 3. Segmenting the synthetic test image of Fig. 1 using the multi-phase version of the algorithm in Section 6, which is explained in
Section 7. Only 15 iterations were necessary to reach an essentially steady state. Each iteration involved taking three steps with scheme
(27), bringing the total number of steps taken for curve evolution to 45.
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parameters were used in the algorithm. In particular, in each case only 15 iterations of the algorithm
were necessary, and only three steps of scheme (27) were taken per iteration. In contrast, the number of
iterations in standard implementations of the two-dimensional Chan–Vese algorithm grows at least
linearly with respect to the number of pixels in the image.
9. Discussion

We mentioned in Section 8 that a major advantage of the algorithms proposed in this paper is that they
can be applied with very large choices of the parameter dt, in which case they reach a fixed point very rapidly.
However, when dt is too large, there is naturally a loss of accuracy in the recovered boundaries. More
specifically, we observed that if dt is too large compared to the scale parameter k�1, then boundaries of
the segmentation turn out to be slightly oversmoothed. It is possible to compensate for this lack of accuracy
without giving up on the use of a very large dt. One can start the computation with a very large dt, and after a
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Fig. 5. Solutions (region boundaries) obtained by the algorithm of Section 6 using the test image of Fig. 2 at different resolutions.
Going left to right, top to bottom, the resolutions were 1282, 2562, 5122, and 10242, respectively. The same parameters were used
throughout. In particular, the same number of iterations (namely 15) of the algorithm were taken in each case, regardless of the
resolution. Also, the same number of steps of scheme (27) (namely three) were used for each iteration, at every resolution.
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few steps (once the segmentation is within a small neighborhood of the solution) switch to a more moderate
choice. To keep things simple, in obtaining the numerical examples of the previous section we simply used a
single moderate to small choice of dt; the convergence was still very fast.

Numerical solution of model (2), and also of the multi-phase versions such as (3), tend to be easier
when the scale parameter k is large, corresponding to a fine segmentation (i.e. a segmentation that
allows high curvatures in the region boundaries). For then the segmentation models reduce to the well
known k-means problem of data clustering (where data are one-dimensional in the case of grayscale
images); this fact was observed in [10]. Furthermore, when the geometric terms are dropped from
the piecewise constant models, the algorithms of Chan and Vese become equivalent to the k-means
algorithm, and converge rapidly. Another way of saying this is: when k is large the PDE of the
Chan–Vese algorithm becomes diagonally dominant (i.e. more and more local) so that even slow solu-
tion techniques converge rather quickly.

Most of the existing PDE based algorithms for minimizing segmentation functionals such as (2) and (3)
suffer from a serious degradation in speed when the scale parameter k is moderate or small, corresponding
to a coarse segmentation in which the geometric penalty term plays a significant role. In this regime, our
proposed algorithm exhibits dramatically improved efficiency in computing results close to those obtained
from the Chan–Vese algorithm.

It is possible to come up with a number of ad hoc tricks to further speed up the proposed segmentation
process. A simple one of such involves starting the computation from a good initial guess: One can use
k-means clustering (i.e. segmentation with no geometric regularization) to produce an initial segmentation
to feed into the threshold dynamics, especially when a detailed final segmentation is desired (corresponding
to a large k value). This is equivalent to running the proposed algorithm first with a very large choice of k,
and then using the result found as initial guess for another run in which the user specified value of k is used.
A further option is to gradually decrease the parameter k. Of course, these well-known ‘‘tricks’’ are not spe-
cific to the algorithm of this paper but can be used in combination with others as well.

Finally, it is worth discussing certain numerical difficulties of threshold dynamics due to finite discreti-
zation size. For the MBO algorithm, it is well-known that if dt is chosen too small (for instance in order to
get better accuracy) compared to the spatial resolution (i.e. the number of grid points), then the interface
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can get stuck and not move. This issue has been addressed by Ruuth in [29], where an adaptive version of
the MBO algorithm was developed and solved using the fast Fourier transform. The same improvement can
certainly be developed for the proposed dynamics of this paper. Moreover, in our applications, accurate
simulation of the dynamics is not important as long as we come reasonably close to the correct steady state
quickly; in practice, one therefore uses values of dt that are nowhere as small, in which case getting stuck
becomes a non-issue.
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